CropWatch Bulletin QUARTERLY REPORT ON GLOBAL CROP PRODUCTION

Monitoring Period: July - October 2020

> Volume 20, No. 4 (No. 119)

November 30, 2020

中国科学院空天信息创新研究院

Aerospace Information Research Institute Chinese Academy of Sciences

Croplatch -

November 2020

Aerospace Information Research Institute (AIR), Chinese Academy of Sciences

P.O. Box 9718-29, Olympic Village Science Park West Beichen Road, Chaoyang Beijing 100101, China

This bulletin is produced by the CropWatch research team, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, under the overall guidance of Professor Bingfang Wu.

Contributors are Abdelrazek Elnashar (Egypt), Sheng Chang, Yicheng Cai (Hubei, China), Shuping Chengping (Hubei, China), Diego de Abelleyra (Argentina), Elijah Phiri (Zambia), Jose Bofana (Mozambique), Ganbat Bavuudorj (Mongolia), Li Fu, Zhijun Fu, Yuanchao Li, Zhongyuan Li (Hubei, China), Wenjun Liu, Yuming Lu, Linghua Meng (Changchun, China), Zonghan Ma, Mohsen N. Ramadan (Egypt), Rukundo Emmanuel (Rwanda), Urs Christoph Schulthess (CIMMYT, Netherlands), Bishnu Prasad Pangali Sharma (Nepal), Binfeng Sun (Jiangxi, China), Shengtao Su, Meng Tang (Hubei, China), Fuyou Tian, Huanfang Wang, Linjiang Wang, Qiang Wang (Anhui,China), Yuandong Wang (Jiangxi, China), Zhengdong Wang, Panpan Wei (Henan, China), Bingfang Wu, Fangming Wu, Jiaming Xu, Nana Yan, Zhishan Ye (Anhui, China), Hongwei Zeng, Miao Zhang, Xiwang Zhang (Henan, China), Dan Zhao, Hang Zhao, Xinfeng Zhao, Liang Zhu, Weiwei Zhu, and Qifeng Zhuang (Jiangsu, China).

Editor: Liang Zhu

Corresponding author: Professor Bingfang Wu

Aerospace Information Research Institute, Chinese Academy of Sciences Fax: +8610-64858721, E-mail: cropwatch@radi.ac.cn, wubf@radi.ac.cn

CropWatch Online Resources: This bulletin along with additional resources is also available on the CropWatch Website at http://www.cropwatch.com.cn and http://cloud.cropwatch.com.cn/.

Disclaimer: This bulletin is a product of the CropWatch research team at the Aerospace Information Research Institute (AIR), Chinese Academy of Sciences. The findings and analyses described in this bulletin do not necessarily reflect the views of the Institute or the Academy and the Aerospace Information Research Institute (AIR); the CropWatch team also does not guarantee the accuracy of the data included in this work. AIR and CAS are not responsible for any losses as a result of the use of this data. The boundaries used for the maps are the GAUL boundaries (Global Administrative Unit Layers) maintained by FAO; where applicable official Chinese boundaries have been used. The boundaries and markings on the maps do not imply a formal endorsement or opinion by any of the entities involved with this bulletin.

Contents

• NOTE: CROPWATCH RESOURCES, BACKGROUND MATER ARE AVAILABLE ONLINE AT WWW.CROPWATCH.COM.CN.	IALS AND ADDITIONAL DATA
CONTENTS	II
ABBREVIATIONS	V
BULLETIN OVERVIEW AND REPORTING PERIOD	VI
EXECUTIVE SUMMARY	9
CHAPTER 1. GLOBAL AGROCLIMATIC PATTERNS	
1.1 Introduction to CropWatch agroclimatic indicators (CWAIs)	11
1.2 GLOBAL OVERVIEW	
1.3 RAINFALL	
1.4 TEMPERATURES	
1.6 BIOMSS	
CHAPTER 2. CROP AND ENVIRONMENTAL CONDITIONS IN	
CHAITER 2. CROT AND ENVIRONMENTAL CONDITIONS IN	
2.1 Overview	
2.2 West Africa	18
2.3 North America	
2.4 SOUTH AMERICA	
2.5 SOUTH AND SOUTHEAST ASIA	
2.6 WESTERN EUROPE	
CHAPTER 3. CORE COUNTRIES	
3.2 COUNTRY ANALYSIS	
CHAPTER 4. CHINA	
4.1 Overview	
4.2 CHINA'S WINTER CROPS PRODUCTION	
4.3 REGIONAL ANALYSIS	179
CHAPTER 5. FOCUS AND PERSPECTIVES	193
5.1 CropWatch food production estimates	193
5.2 DISASTER EVENTS	
5.3 UPDATE ON EL NIÑO	201
ANNEX A. AGROCLIMATIC INDICATORS	204
ANNEX B. QUICK REFERENCE TO CROPWATCH INDICATOR	•
METHODOLOGIES	
DATA NOTES AND BIBLIOGRAPHY	
ACKNOWLEDGMENTS	223
ONLINE DESCRIBEES	22/

LIST OF TABLES

TABLE 1.1 DEPARTURES FROM THE RECENT 15-YEAR AVERAGE OF CROPWATCH
AGRO-CLIMATIC INDICATORS OVER REGIONAL MRU GROUPS14
TABLE 2.1 AGROCLIMATIC INDICATORS BY MAJOR PRODUCTION ZONE, CURRENT
VALUE AND DEPARTURE FROM 15YA (JULY-OCTOBER 2020)
TABLE 2.2 AGRONOMIC INDICATORS BY MAJOR PRODUCTION ZONE, CURRENT
SEASON VALUES AND DEPARTURE FROM 5YA (JULY-OCTOBER 2020)
TABLE 3.1 JULY- OCTOBER 2020 AGRO-CLIMATIC AND AGRONOMIC INDICATORS BY
COUNTRY, CURRENT VALUE AND DEPARTURE FROM AVERAGE34
TABLE 3.2 AFGHANISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020 38
TABLE 3.3 AFGHANISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 38
TABLE 3.4 ANGOLA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020 41
TABLE 3.5 ANGOLA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 202041
TABLE 3.6 ARGENTINA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020 44
TABLE 3.7 ARGENTINA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 44
TABLE 3.8 AUSTRALIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020 47
TABLE 3.9 AUSTRALIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 47
TABLE 3.10 BANGLADESH'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020 50
TABLE 3.11 BANGLADESH'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 50
TABLE 3.12 BELARUS'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020.53
TABLE 3.13 BELARUS'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.14 BRAZIL'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.16 CANADA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020 60
TABLE 3.17 CANADA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 61
TABLE 3.18 GERMANY AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020 65
TABLE 3.19 GERMANY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUE AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 65
TABLE 3.20 EGYPT'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY- OCTOBER 2020
TABLE 3.21 EGYPT'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020

TABLE 3.22 ETHIOPIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY- OCTOBER 2020.7
TABLE 3.23 ETHIOPIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020 72
TABLE 3.24 FRANCE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY- OCTOBER 2020. 75
TABLE 3.25 FRANCE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020
TABLE 3.26 UNITED KINGDOM'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL
REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-
OCTOBER 2020
TABLE 3.27 UNITED KINGDOM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020 79
TABLE 3.28 HUNGARY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY- OCTOBER 2020. 82
TABLE 3.29 HUNGARY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020 82
TABLE 3.30 INDONESIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY – OCTOBER 2020 84
TABLE 3.31 INDONESIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 85
TABLE 3.32 INDIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020
TABLE 3.33 INDIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020
TABLE 3.34 IRAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.35 IRAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUE AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.36 ITALY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020
TABLE 3.37 ITALY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020
TABLE 3.38 KAZAKHSTAN AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER2020 98
TABLE 3.39 KAZAKHSTAN, AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 98
TABLE 3.40 KENYA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY -OCTOBER 2020
TABLE 3.41 KENYA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE, JULY - OCTOBER 2020
TABLE 3.42 KYRGYZSTAN'S AGROCLIMATIC INDICATORS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.43 KYRGYZSTAN'S AGRONOMIC INDICATORS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2020103
TABLE 3.44 CAMBODIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
10

TABLE 3.45 CAMBODIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 100 TABLE 3.46 SRI LANK'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.47 SRI LANK'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURREN SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.49 MOROCCO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 112 TABLE 3.50 MEXICO'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.51 MEXICO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.53 MYANMAR'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 118 TABLE 3.54 MONGOLIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.55 MONGOLIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 12' TABLE 3.56 MOZAMBIQUE AGRO-CLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020. 12' TABLE 3.57 MOZAMBIQUE AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 12' TABLE 3.58 NIGERIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.59 NIGERIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.63 PHILIPPINES' AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 13/ TABLE 3.64 POLAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020 13/ TABLE 3.65 POLAND'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA JULY-OCTOBER 2020 13/

TABLE 3.66 ROMANIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.67 ROMANIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 140
TABLE 3.68 RUSSIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
· · · · · · · · · · · · · · · · · · ·
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.69 RUSSIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 144
TABLE 3.70 THAILAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
148
TABLE 3.71 THAILAND'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 148
TABLE 3.72 TURKEY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.73 TURKEY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020
TABLE 3.74 UKRAINE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS.
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, - JULY- OCTOBER 2020
153
TABLE 3.75 UKRAINE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY- OCTOBER 2020
TABLE 3.76 UNITED STATES' AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY2020 TO OCTOBER
2020
TABLE 3.77 UNITED STATES' AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS.
CURRENT SEASON'S VALUES AND DEPARTURE, JULY2020 TO OCTOBER 2020 159
TABLE 3.78 UZBEKISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.79 UZBEKISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 162
TABLE 3.80 VIETNAM'S AGRO-CLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY-OCTOBER 2020 166
TABLE 3.81 VIETNAM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY-OCTOBER 2020 166
TABLE 3.82 SOUTH AFRICA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.83 SOUTH AFRICA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JULY - OCTOBER 2020 170
TABLE 3.84 ZAMBIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2020
TABLE 3.85 ZAMBIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASONI'S MALLIES AND DEPARTIPE FROM 5VA THEY OCTORED 2020 172

TABLE 4.1 CROPWATCH AGROCLIMATIC AND AGRONOMIC INDICATORS FOR CHINA	,
JULY - OCTOBER 2020, DEPARTURE FROM 5YA AND 15YA1	75
TABLE 4.2 CHINA 2020 WINTER CROPS, SUMMER CROPS AND TOTAL ANNUAL CROP	
PRODUCTION AND PERCENTAGE DIFFERENCE FROM 2019, BY PROVINCE	77
TABLE 4.3 CHINA 2020 PRODUCTION (THOUSAND TONS) OF MAIZE, RICE, WHEAT, AND)
SOYBEAN, AND PERCENTAGE CHANGE FROM 2019, BY PROVINCE1	78
TABLE 4.4 CHINA 2020 EARLY RICE, SINGLE RICE/SEMI-LATE RICE, AND LATE RICE	
PRODUCTION AND PERCENTAGE DIFFERENCE FROM 2019, BY PROVINCE1	79
TABLE 5.1 2020 CEREAL AND SOYBEAN PRODUCTION ESTIMATES IN THOUSAND TONNE	S.
Δ is the percentage of change of 2020 production when compared Wi	ΤH
CORRESPONDING 2019 VALUES	
TABLE A.1 JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS BY GLOBA	٩L
MONITORING AND REPORTING UNIT (MRU)2	<u>'</u> 04
TABLE A.2 JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS BY	
COUNTRY2	:06
TABLE A.3 ARGENTINA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND	
BIOMASS (BY PROVINCE)	
TABLE A.4 AUSTRALIA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMA	
(BY STATE)	
TABLE A.5 BRAZIL, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS (I	
STATE)	
TABLE A.6 CANADA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMAS	
(BY PROVINCE)2	
TABLE A.7 INDIA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS (B	
STATE)	:08
TABLE A.8 KAZAKHSTAN, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND	
BIOMASS (BY OBLAST)	
TABLE A.9 RUSSIA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS (E	
OBLAST, KRAY AND REPUBLIC)	:09
TABLE A.10 UNITED STATES, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND	
BIOMASS (BY STATE)	:10
TABLE A.11 CHINA, JUL 2020 - OCT 2020 AGROCLIMATIC INDICATORS AND BIOMASS	
(BY PROVINCE)2	:10

LIST OF FIGURES

FIGURE 1.1 GLOBAL DEPARTURE FROM RECENT 15 YEAR AVERAGE OF THERAIN, TEMP AND	RADPAR
INDICATORS SINCE 2017 ONDJ PERIOD (AVERAGE OF 65 MRUS, UNWEIGHTED)	13
FIGURE 1.2 GLOBAL MAP OF RAINFALL ANOMALY (AS INDICATED BY THE RAIN	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT: DEPARTUR	E OF
JULY TO OCTOBER 2020 TOTAL FROM 2005-2019 AVERAGE (15YA), IN PERC	
FIGURE 1.3 GLOBAL MAP OF TEMPERATURE ANOMALY (AS INDICATED BY THE T	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT: DEPARTUR	
JULY TO OCTOBER 2020 AVERAGE FROM 2005-2019 AVERAGE (15YA), IN	
FIGURE 1.4 GLOBAL MAP OF PHOTOSYNTHETICALLY ACTIVE RADIATION ANOM	
INDICATED BY THE RADPAR INDICATOR) BY CROPWATCH MAPPING AND	17 (7 (7 (0
REPORTING UNIT: DEPARTURE OF JULY TO OCTOBER 2020 TOTAL FROM 200	15 2010
AVERAGE (15YA), IN PERCENT.	
· ,	
FIGURE 1.5 GLOBAL MAP OF BIOMASS ACCUMULATION (AS INDICATED BY THE	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT (MRU), DEF	
FROM 15YA BETWEEN BETWEEN JULY TO OCTOBER 2020	
FIGURE 3.1 NATIONAL AND SUBNATIONAL RAINFALL ANOMALY (AS INDICATED	
RAIN INDICATOR) OF JULY TO OCTOBER 2020 TOTAL RELATIVE TO THE 2005	
AVERAGE (15YA), IN PERCENT	
FIGURE 3.2 NATIONAL AND SUBNATIONAL TEMPERATURE ANOMALY (AS INDICA	
THE TEMP INDICATOR) OF JULY TO OCTOBER 2020 AVERAGE RELATIVE TO	
2019 AVERAGE (15YA), IN °C	
FIGURE 3.3 NATIONAL AND SUBNATIONAL SUNSHINE ANOMALY (AS INDICATED	
RADPAR INDICATOR) OF JULY TO OCTOBER 2020 TOTAL RELATIVE TO THE 2	
AVERAGE (15YA), IN PERCENT	33
FIGURE 3.4 NATIONAL AND SUBNATIONAL BIOMASS PRODUCTION POTENTIAL	
ANOMALY (AS INDICATED BY THE BIOMSS INDICATOR) OF JULY TO OCTOB	3ER 2020
TOTAL RELATIVE TO THE 2005-2019 AVERAGE (15YA), IN PERCENT	33
FIGURE 3.5 AFGHANISTAN'S CROP CONDITION, JULY - OCTOBER 2020	37
FIGURE 3.6 ANGOLA'S CROP CONDITION, JULY-OCTOBER 2020	39
FIGURE 3.7 ARGENTINA'S CROP CONDITION, JULY - OCTOBER 2020	43
FIGURE 3.8 AUSTRALIA'S CROP CONDITION, JULY - OCTOBER 2020	45
FIGURE 3.9 BANGLADESH'S CROP CONDITION, JULY - OCTOBER 2020	48
FIGURE 3.10 BELARUS'S CROP CONDITION, JULY - OCTOBER 2020	51
FIGURE 3.11 BRAZIL'S CROP CONDITION, JULY - OCTOBER 2020	
FIGURE 3.12 CANADA'S CROP CONDITION, JULY - OCTOBER 2020	
FIGURE 3.13 GERMANY'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.14 EGYPT'S CROP CONDITION, JULY- OCTOBER 2020	
FIGURE 3.15 ETHIOPIA'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.16 FRANCE'S CROP CONDITION, JULY - OCTOBER 2020	
FIGURE 3.17 UNITED KINGDOM'S CROP CONDITION, JULY - OCTOBER 2020	
FIGURE 3.18 HUNGARY'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.19 INDONESIA'S CROP CONDITION, JULY – OCTOBER 2020	
FIGURE 3.20 INDIA'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.21 IRAN'S CROP CONDITION, JULY - OCTOBER 2020	
FIGURE 3.22 ITALY'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.23 KAZAKHSTAN'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.24 KENYA'S CROP CONDITION, JULY-OCTOBER 2020	
FIGURE 3.24 KENTA'S CROP CONDITION, JULY-OCTOBER 2020	
	1117

FIGURE 3.	CAMBODIA'S CROP CONDITION, JULY - OCTOBER 2020 10	5
FIGURE 3.	SRI LANKA'S CROP CONDITION, JULY - OCTOBER 202010	8
FIGURE 3.	MOROCCO'S CROP CONDITION, JULY - OCTOBER 202011	C
FIGURE 3.	MEXICO'S CROP CONDITION, JULY - OCTOBER 202011	3
FIGURE 3.	MYANMAR'S CROP CONDITION, JULY - OCTOBER 202011	6
	MONGOLIA'S CROP CONDITION, JULY - OCTOBER 202011	
FIGURE 3.	MOZAMBIQUE'S CROP CONDITION, JULY - OCTOBER 202012	2
	NIGERIA'S CROP CONDITION, JULY - OCTOBER 202012	
FIGURE 3.	PAKISTAN'S CROP CONDITION, JULY-OCTOBER, 202012	9
	PHILIPPINES' CROP CONDITION, JULY - OCTOBER 202013	
	POLAND'S CROP CONDITION, JULY - OCTOBER 202013	
	ROMANIA'S CROP CONDITION, JULY - OCTOBER 202013	
	RUSSIA'S CROP CONDITION, JULY - OCTOBER 202014	
	THAILAND'S CROP CONDITION, JULY - OCTOBER 202014	
	TURKEY'S CROP CONDITION, JULY - OCTOBER 202014	
	UKRAINE'S CROP CONDITION, JULY- OCTOBER 2020	
	UNITED STATES' CROP CONDITION, JULY - OCTOBER 2020	
	UZBEKISTAN'S CROP CONDITION, JULY - OCTOBER 2020	
	VIETNAM'S CROP CONDITION, JULY-OCTOBER 2020	
	SOUTH AFRICA'S CROP CONDITION, JULY - OCTOBER 2020	
	ZAMBIA'S CROP CONDITION, JULY - OCTOBER 2020	
		•
FIGURE 4	CHINA CROP CALENDAR17	
	CHINA SPATIAL DISTRIBUTION OF RAINFALL PROFILES, JULY TO OCT 2020 17	
	CHINA SPATIAL DISTRIBUTION OF TEMPERATURE PROFILES, JULY TO OCT 2020	
FIGURE 4.	CHINA CROPPED AND UNCROPPED ARABLE LAND, BY PIXEL, JULY TO OCT	
	CHINA MAXIMUM VEGETATION CONDITION INDEX (VCIX), BY PIXEL, JULY TO	
	20	
	CHINA BIOMASS DEPARTURE MAP FROM 15YA, BY PIXEL, JULY TO OCT 2020	
	CHINA MINIMUM VEGETATION HEALTH INDEX (VHIM), BY PIXEL, JULY TO	
	2017	6
	CROP CONDITION CHINA NORTHEAST REGION, JULY - OCTOBER 2020 18	
	CROP CONDITION CHINA INNER MONGOLIA, JULY - OCTOBER 2020 18	
	CROP CONDITION CHINA HUANGHUAIHAI REGION, JULY - OCTOBER 2020	
	CROP CONDITION CHINA LOESS REGION, JULY - OCTOBER 2020	
	CROP CONDITION CHINA LOWER YANGTZE REGION, JULY - OCTOBER 2021	
	CROP CONDITION CHINA SOUTHWEST REGION, JULY-OCTOBER 2020 18	
	CROP CONDITION CHINA SOUTHERN REGION, JULY - OCTOBER 2020 19	
	AO DESERT LOCUST BULLETIN, THE CURRENT SITUATION DURING NOVEMEBR	
	AO DESERT LOCUST BULLETIN, FORECAST UNTIL MID-DECEMBER 2020 19	
	HE MASSIVE DAMAGE OF THE MAIZE FIELDS IN IOWA, USA, AFTER THE	
	IO ON AUGUST 10, 2020	ع
	IO OIN/NOOUSI IO, ZOZO	C

FIGURE 5.4 REMOTE SENSING MONITORING RESULTS OF MAIZE LODGING IN	
HEILONGJIANG AND JILIN PROVINCES OF CHINA IN 2020	199
FIGURE 5.5 COMPARISON BETWEEN UAV AERIAL IMAGERY AND REMOTE SENSING	
MONITORING OF MAIZE LODGING AREA IN ZHAODONG, HEILONGJIANG	
PROVINCE	199
FIGURE 5.6 THE OVERFLOW IN SONGHUA RIVER LOCATED IN THE HEILONGJIANG	
PROVINCE OF NORTHEAST CHINA ON OCTOBER 25, 2020 (RIGHT) COMPARED TO)
NORMAL YEAR (NOVEMBER 1, 2019, ON THE LEFT). THE RIVER OVERFLOW WAS	
CAPTURED BY TWO MODIS TERRA SATELLITE IMAGES DISPLAYED IN FALSE-COLOR	
USING INFRARED AND VISIBLE LIGHT (BANDS 7-2-1) TO BETTER DISTINGUISH WATER	?
FROM LAND. VEGETATION APPEARS GREEN, WATER APPEARS DARK BLUE, AND	
BARE LAND APPEARS BROWN	200
FIGURE 5.7 THE STANDARDIZED PRECIPITATION-EVAPOTRANSPIRATION INDEX (SPEI)	
ESTIMATED GLOBALLY FOR THE MONTHS; JULY TO SEPTEMBER OF 2020,	201
FIGURE 5.8 MONTHLY SOI-BOM TIME SERIES FROM JULY 2019 TO JULY 2020	202
FIGURE 5.9 MAP OF NINO REGION	202
FIGURE 5.10 OCTOBER 2020 SEA SURFACE TEMPERATURE DEPARTURE FROM THE 1961	-
1990 AVERAGE	203

Abbreviations

5YA Five-year average, the average for the four-month period from July to October for

2015-2019; one of the standard reference periods.

15YA Fifteen-year average, the average for the four-month period from July to October

for 2005-2019; one of the standard reference periods and typically referred to as

"average".

AEZ Agro-Ecological Zone

BIOMSS CropWatch agroclimatic indicator for biomass production potential

BOM Australian Bureau of Meteorology
CALF Cropped Arable Land Fraction
CAS Chinese Academy of Sciences
CWAI CropWatch Agroclimatic Indicator

CWSU CropWatch Spatial Units

DM Dry matter

EC/JRC European Commission Joint Research Centre

ENSO EI Niño Southern Oscillation

FAO Food and Agriculture Organization of the United Nations

GAUL Global Administrative Units Layer

GVG GPS, Video, and GIS data

Ha hectare Kcal kilocalorie

MPZ Major Production Zone
MRU Mapping and Reporting Unit

NDVI Normalized Difference Vegetation Index

OISST Optimum Interpolation Sea Surface Temperature

PAR Photosynthetically active radiation
PET Potential Evapotranspiration

AIR CAS Aerospace Information Research Institute

RADPAR CropWatch PAR agroclimatic indicator
RAIN CropWatch rainfall agroclimatic indicator

SOI Southern Oscillation Index

TEMP CropWatch air temperature agroclimatic indicator

Ton Thousand kilograms

VCIx CropWatch maximum Vegetation Condition Index

VHI CropWatch Vegetation Health Index

VHIn CropWatch minimum Vegetation Health Index

W/m² Watt per square meter

Bulletin overview and reporting period

This CropWatch bulletin presents a global overview of crop stage and condition between July and October 2020, a period referred to in this bulletin as the JASO (July, August, September and October) period or just the "reporting period." The bulletin is the 119th such publication issued by the CropWatch group at the Aerospace Information Research Institute (AIR) of the Chinese Academy of Sciences, Beijing.

CropWatch indicators

CropWatch analyses are based mostly on several standard as well as new ground-based and remote sensing indicators, following a hierarchical approach.

In parallel to an increasing spatial precision of the analyses, indicators become more focused on agriculture as the analyses zoom in to smaller spatial units. CropWatch uses two sets of indicators: (i) agroclimatic indicators—RAIN, TEMP, RADPAR, and potential BIOMSS, which describe weather factors and its impacts on crops. Importantly, the indicators RAIN, TEMP, RADPAR, and BIOMSS do not directly describe the weather variables rain, temperature, radiation, or biomass, but rather they are spatial averages over agricultural areas, which are weighted according to the local crop production potential; and (ii) agronomic indicators—VHIn, CALF, and VCIx and vegetation indices, describing crop condition and development. (iii) PAY indicators: planted area, yield and production.

For each reporting period, the bulletin reports on the departures for all seven indicators, which (with the exception of TEMP) are expressed in relative terms as a percentage change compared to the average value for that indicator for the last five or fifteen years (depending on the indicator). For more details on the CropWatch indicators and spatial units used for the analysis, please see the quick reference guide in Annex B, as well as online resources and publications posted at www.cropwatch.com.cn.

CropWatch analysis and indicators

The analyses cover large global zones; major producing countries of maize, rice, wheat, and soybean; and detailed assessments for Chinese regions, 42 major agricultural countries, and 217 Agro-Ecological Zones (AEZs).

This bulletin is organized as follows:

Chapter	Spatial coverage	Key indicators
Chapter 1	World, using Mapping and Reporting Units (MRU), 65 large, agro-ecologically homogeneous units covering the globe	RAIN, TEMP, RADPAR, BIOMSS
Chapter 2	Major Production Zones (MPZ), six regions that contribute most to global food production	As above, plus CALF, VCIx, and VHIn
Chapter 3	42 key countries (main producers and exporters) and 210 AEZs	As above plus NDVI and GVG survey
Chapter 4	China and regions	As above plus high-resolution images; Pest and crops trade prospects
Chapter 5	Production outlook, and updates on disaster events and El Niño.	

Regular updates and online resources

The bulletin is released quarterly in both English and Chinese. E-mail cropwatch@radi.ac.cn to sign up for the mailing list or visit CropWatch online at www.cropwatch.com.cn, http://cloud.cropwatch.com.cn/

Executive summary

The current CropWatch bulletin describes world-wide crop condition and food production as appraised by data up to the end of October 2020. It is prepared by an international team coordinated by the Aerospace Information Research Institute, Chinese Academy of Sciences.

Special attention is paid to the major producers of maize, rice, wheat and soybean throughout the bulletin. The assessment is based mainly on remotely sensed data. It covers prevailing weather conditions, including extreme factors, at different spatial scales, starting with global patterns in Chapter 1. Chapter 2 focuses on agro-climatic and agronomic conditions in major production zones in all continents. Chapter 3 covers the major agricultural countries that, together, make up at least 80% of production and exports. Each is the object of a detailed analysis. Chapter 3 constitutes the bulk of the Bulletin. Chapter 4 zooms into China. The bulletin also presents this year's third CropWatch production estimates for selected countries and reviews the first production estimation in chapter 5.

This report for the period from July to October 2020 covers wheat, maize, soybean and rice production in the Northern Hemisphere. Winter wheat reached maturity in June/July. The harvest of the summer crops (spring wheat, maize, rice and soybean) started in August and was mostly finished by the end of October. In the southern hemisphere, wheat is the only major crop that was grown during this monitoring period. It reaches maturity in October (Southern Brazil) or in November and December (Argentina, South Africa and Australia).

So far, the outbreak of COVID-19 has had limited impact on the production of the major crops. As this, and other reports, show, production levels of the major staple crops, such as maize, rice, wheat and soybean remained high and also benefitted from generally favorable weather conditions. However, disruptions in the domestic food supply chains, price hikes, loss of remittances and income have mostly hurt the people who were already poor. Before the pandemic outbreak covered the entire globe, 690 million people were already chronically and 135 million were acutely food insecure. The U.N. World Food Programme has warned that an additional 130 million could face acute food insecurity by the end of 2020.

Another plague, the outbreak of desert locusts in East Africa, Middle East and southwest Asia is still not under control either. According to the FAO, the situation remains alarming in Ethiopia, Kenya and Somalia, a region where millions of people already face acute food insecurity.

Agro-climatic conditions

According to the analyses presented in Chapters 1 and 3.1, prevailing climate conditions during the current 2020 JASO reporting period were close to normal for cropland. Average temperatures, rainfall and photosynthetically active solar radiation stayed close to the 15-year average. No prolonged heat wave in any of the major production countries was observed during this period.

At the global scale, the series of record or close to record high temperatures continued throughout this monitoring period: July and August ranked as 2nd, September as 1st and October as the 4th warmest respective months in past 141 years. For the months from January to October, this was the second warmest period on record. The temperature departure was +1.0°C above the 20th century average.

Overall, the prospects for crop production were quite favorable, mainly because no prolonged, large scale droughts were observed. In many regions, the crops benefitted from the above average rainfall that had

been recorded for the previous monitoring period. The stored soil moisture helped sustain crop growth, even when precipitation was below average. Below average rainfall was recorded for Central and South America (-14%) and North America (-11%), mainly in the Western USA. Conditions were drier than usual in Europe as well (-6%). Above average rainfall was recorded for Central Asia (+20%) and East Asia (+19%). The latter started this monitoring period under drought conditions, but a series of typhoons and tropical depression brought large amounts of rainfall to that region. Conditions turned back to normal in Oceania as well, where rainfall was 8% above average.

The following is a summary of the conditions in the key production regions:

- North America: Production conditions were generally favorable for maize and soybean. Harvest benefitted from slightly drier than usual conditions. US maize (+2%), rice (+2%) and soybean (+2%) production is estimated to increase. A reduction by 3 % is expected for wheat. In Canada, soybean production remained at the same level as last year, whereas wheat increased by +5%.
- South America: Wheat production in Brazil was favorable (+3%), but Argentina suffered from drought conditions (-16%). A delay in the onset of the summer rains delayed sowing of maize and soybean in Brazil. La Niña may cause further rainfall deficits in Brazil and Argentina in the coming months.
- Europe: Rainfall was generally on the dry side. Production of summer crops was slightly below normal.
- Africa: Abundant rainfall benefitted the crops in the Horn of Africa and West Africa. Wheat in South Africa also benefitted from favorable weather conditions
- Eastern Europe to the Ural: Romania, the northern Caucasus and Volga regions of Russia, as well as the Ukraine suffered from a rainfall deficit which caused reduced yields of the summer crops.
- Siberia and Kazakhstan: benefited from above average rainfall and above average wheat yields were harvested in that region.
- China: It generally benefitted from abundant rainfall and production slightly increased over last year's levels: Maize production is estimated to increase by 0.8%, wheat by 2,9% and soybean by 0.9%. Rice production remained stable (-0.2%), despite of the heavy floods in the Yangtze river basin in early summer. The north-east was hit by 3 typhoons, causing wind damage and local floods affecting about 1 million ha of maize.
- South Asia: India, as well as Pakistan benefitted from favorable monsoon rains and rice production increased by more than 6% in both countries. Bangladesh, on the other hand, experienced severe floods and production is expected to decrease by 6%.
- South-East Asia: This region recovered from the drought conditions. Several typhoons, most of them hitting the area just after harvest of the main rice crops, brought plenty of rainfall to the region. Production is estimated at average levels.
- Australia: Especially the south-east recovered from last year's severe drought and a sharp increase by 8.57 million tons (+44.3%) from 2019 is estimated for wheat.

In 2020, global maize production is expected to be at 1.070 billion tons, an increase of 1.4% or equivalent to 15.15 million tons; global rice production is expected to be 760 million tons at an increase of 0.9% or an increase of 6.80 million tons; global wheat production is 738 million tons, an 3.1% increase of 21.98 million tons; global soybean production is expected to be 323 million tons, a slight decrease of 0.2%. In 2020, the global production of the major cereals and oil crops will be generally stable.