CropWatch Bulletin QUARTERLY REPORT ON GLOBAL CROP PRODUCTION

Monitoring Period: July - October 2019

> Volume 19, No. 4 (No. 115)

November 30, 2019

Institute of Remote Sensing and Digital Earth (RADI) Chinese Academy of Sciences (CAS) Crop atch

November 2019 Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences P.O. Box 9718-29, Olympic Village Science Park West Beichen Road, Chaoyang Beijing 100101, China

This bulletin is produced by the CropWatch research team, Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences, under the overall guidance of Professor Bingfang Wu.

Contributors are Diego de Abelleyra (Argentina), Awetahegn Niguse Beyene(Ethiopia), Jose Bofana (Mozambique), Sheng Chang, Abdelrazek Elnashar (Egypt), Yicheng Cai, Zhijun Fu, Wenwen Gao, René Gommes (Belgium), Wenjun Liu, Yuming Lu, Zonghan Ma, Elijah Phiri (Zambia), Elena Proudnikova (Russia), Mohsen N. Ramadan (Egypt), Igor Savin (Russia), Isaev Erkin (Kyrgyzstan), Urs Christoph Schulthess (CIMMYT, Netherlands), Shengtao Su, Fuyou Tian, Battestseg Tuvdendorj (Mongolia), Linjiang Wang, Zhengdong Wang, Bingfang Wu, Qiang Xing, Jie Xiong, Jiaming Xu, Nana Yan, Shanlian Yang, Hongwei Zeng, Miao Zhang, Dan Zhao, Hang Zhao, Xinfeng Zhao, Liang Zhu, Weiwei Zhu and Qifeng Zhuang.

Thematic contributors for this bulletin include: Fengying Nie (niefengying@sohu.com) and Xuebiao Zhang (zhangxuebiao@caas.cn) for the section on food import and export outlook for 2019. Wenjiang Huang (huangwj@radi.ac.cn) and Yingying Dong (dongyy@radi.ac.cn) for pest monitoring

Field data contributor are Dehua Mao, Zhongyuan Li, Yichen Cai, Shaoqi Huang, Meng Tang, Zhengbin Zheng and other more than 300 persons

Editor: Wenjun Liu

Corresponding author: Professor Bingfang Wu

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences Fax: +8610-64858721, E-mail: **cropwatch@radi.ac.cn**, **wubf@radi.ac.cn**

CropWatch Online Resources: This bulletin along with additional resources is also available on the CropWatch Website at http://www.cropwatch.com.cn and http://cloud.cropwatch.com.cn/.

Disclaimer: This bulletin is a product of the CropWatch research team at the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences. The findings and analyses described in this bulletin do not necessarily reflect the views of the Institute or the Academy; the CropWatch team also does not guarantee the accuracy of the data included in this work. RADI and CAS are not responsible for any losses as a result of the use of this data. The boundaries used for the maps are the GAUL boundaries (Global Administrative Unit Layers) maintained by FAO; where applicable official Chinese boundaries have been used. The boundaries and markings on the maps do not imply a formal endorsement or opinion by any of the entities involved with this bulletin.

Contents

NOTE: CROPWATCH RESOURCES, BACKGROUND MATERI DATA ARE AVAILABLE ONLINE AT WWW.CROPWATCH.COM.CN.	ALS AND ADDITIONAL
CONTENTS	III
ABBREVIATIONS	X
BULLETIN OVERVIEW AND REPORTING PERIOD	XI
EXECUTIVE SUMMARY	
CHAPTER 1. GLOBAL AGROCLIMATIC PATTERNS	
1.1 INTRODUCTION TO CROPWATCH AGROCLIMATIC INDICATORS (CWAIS)	
1.2 GLOBAL OVERVIEW	
1.3 RAINFALL (FIGURE 1.2)	
1.4 TEMPERATURES (FIGURE 1.3)	
1.5 RADPAR (FIGURE 1.4)	
CHAPTER 2. CROP AND ENVIRONMENTAL CONDITIONS IN M	AJOR PRODUCTION ZONES
2 1 Overview	
2.2 West Africa	
2.3 North America	
2.4 South America	
2.5 South and Southeast Asia	
2.6 WESTERN EUROPE	
2.7 CENTRAL EUROPE TO WESTERN RUSSIA	
CHAPTER 3. CORE COUNTRIES	
3.1 OVERVIEW	
3.2 COUNTRY ANALYSIS	
CHAPTER 4. CHINA	
4.1 OVERVIEW	
4.2 CHINA S WINTER CROPS PRODUCTION	
4.3 REGIONAL ANALYSIS	190
4.5 MAJOR CROPS TRADE PROSPECTS	
CHAPTER 5 FOCUS AND PERSPECTIVES	196
5.1 CROPWATCH FOOD PRODUCTION ESTIMATES	
5.2 DISASTER EVENTS	
5.3 Update on El Niño	
ANNEX A. AGROCLIMATIC INDICATORS AND BIOMSS	
ANNEX B. QUICK REFERENCE TO CROPWATCH INDICATORS.	SPATIAL UNITS AND
METHODOLOGIES	
DATA NOTES AND BIBLIOGRAPHY	
ACKNOWLEDGMENTS	228
ONLINE RESOURCES	

LIST OF TABLES

TABLE 1.1 DEPARTURES FROM THE RECENT 15-YEAR AVERAGE OF CROPWATCH AGRO-CLIMATIC INDICATORS
OVER REGIONAL MRU GROUPS16
TABLE 3.1 AFGHANISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 15YA, JULY - OCTOBER 2019
TABLE 3.2 AFGHANISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 5YA, JULY - OCTOBER 2019
TABLE 3.3 ANGOLA AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA, JULY - OCTOBER 2019
TABLE 3.4 ANGOLA AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2019
TABLE 3.5 ARGENTINA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 15YA, JULY – OCTOBERL 2019
TABLE 3.6 ARGENTINA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA, JULY – OCTOBER 2019
TABLE 3.7 AUSTRALIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA, JULY – OCTOBERL 2019
TABLE 3.8 AUSTRALIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2019
TABLE 3.9 BANGLADESH'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 15YA, JULY – OCTOBERL 2019
TABLE 3.10 BANGLADESH'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES
AND DEPARTURE FROM 5YA. JULY - OCTOBER 2019
TABLE 3.11 BELARUS'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA. JULY - OCTOBER 2019
TABLE 3.12 BELARUS'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA. JULY - OCTOBER 2019.
TABLE 3.13 BRAZIL'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA. JULY - OCTOBER 2019
TABLE 3 14 BRAZIL'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA JULY - OCTOBER 2019
TABLE 3.15 CANADA'S AGROCUMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA JULY - OCTORER 2019
TABLE 3 16 CANADA AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA JULY - OCTORER 2019
TABLE 3 17 GERMANY AGROCI IMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA. JULY-OCTOBER 2019
TABLE 3.18 GERMANY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUE AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2019
TABLE 3.19 EGYPT'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA, JULY - OCTOBER 2019
TABLE 3.20 EGYPT'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE
FROM 5YA, JULY - OCTOBER 2019
TABLE 3.21 ETHIOPIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA, JULY - OCTOBER 2019
TABLE 3.22 ETHIOPIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2019
TABLE 3.23 FRANCE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND
DEPARTURE FROM 15YA, JULY - OCTOBER 2019
TABLE 3.24 FRANCE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUE AND DEPARTURE
FROM 5YA, JULY - OCTOBER 2019
I ABLE 3.25 UNITED KINGDOM'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES
AND DEPARTURE FROM 15YA, JULY - OCTOBER 2019

TABLE 3.26 UNITED KINGDOM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES A	AND
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	. 85
TABLE 3.27 HUNGARY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	. 87
TABLE 3.28 HUNGARY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	. 88
TABLE 3.29 INDONESIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	. 90
TABLE 3.30 INDONESIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUE AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	. 91
TABLE 3.31 INDIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	. 94
TABLE 3.32 INDIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTL	JRE
FROM 5YA, JULY - OCTOBER 2019	. 95
TABLE 3.33 IRAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA. JULY - OCTOBER 2019	. 98
TABLE 3.34 IRAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUE AND DEPARTUR	ε
FROM 5YA. JULY - OCTOBER 2019	. 98
TABLE 3.35 ITALY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	100
TABLE 3 36 ITALY'S AGRONOMIC INDICATORS BY SUR-NATIONAL REGIONS, CURRENT SEASON'S VALUE AND DEPARTUR	RF
FROM 5YA JULY - OCTOBER 2019	101
TABLE 3 37 KAZAKHSTAN AGROCI IMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	101
TABLE 3.37 RAZARISTAN AGROCENINATIC INDICATORS BI SOB NATIONAL REGIONS, CORRENT SEASON S VALUES AND	10/
TADIE 3 38 KAZAKHSTAN, AGDONOMIC INDICATODS BY SUB-NATIONAL DEGIONS, CUDDENT SEASON'S VALUES AND	104
TABLE 5.50 RAZARIISTAN, AGRONOMIC INDICATORS BI SUB-NATIONAL REGIONS, CORRENT SEASON S VALUES AND	10/
TADLE 2.20 KENVA'S ACDOCUMATIC INDICATORS BY SUD NATIONAL RECIONS, CURRENT SEASON'S VALUES AND	104
TABLE 5.55 KENTA S AGROCLIMATIC INDICATORS BI SUB-NATIONAL REGIONS, CORRENT SEASON S VALUES AND	107
TADLE 2 40 VENUA'S ACDONOMIC INDICATORS DV CUD NATIONAL DECIONS, CURRENT SEASON ¹ S VALUES AND DEPART	
TABLE 5.40 KENYA S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON S VALUES AND DEPART	107
FROM STA, JULY - OCTOBER 2019	107
TABLE 5.41 CAMBODIA AGROCLIMIATIC INDICATORS BY SUB-INATIONAL REGIONS, CORRENT SEASON S VALUES AND	110
DEPARTURE FROM 15YA, JULY - OCTOBERL 2019	110
TABLE 3.42 CAMBODIA, AGRONOMIC INDICATORS BYSUB-NATIONAL REGIONS, CURRENT SEASON S VALUES AND	110
DEPARTURE FROM SYA, JULY - OCTOBER 2019	110
TABLE 3.43 SRI LANKA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	113
TABLE 3.44 SRI LANKA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	113
TABLE 3.45 INTOROCCO'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	116
TABLE 3.46 MOROCCO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	116
TABLE 3.47 MEXICO'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	119
TABLE 3.48 MEXICO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	119
TABLE 3.49 MYANMAR'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	122
TABLE 3.50 MYANMAR'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	122
TABLE 3.51 MONGOLIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	125
TABLE 3.52 MONGOLIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	125
TABLE 3.53 MOZAMBIQUE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AN	ND
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	128

TABLE 3.54 MOZAMBIQUE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND)
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	128
TABLE 3.55 NIGERIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JULY - OCTOBER 2019	131
TABLE 3.56 NIGERIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	131
TABLE 3.57 PAKISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	134
TABLE 3.58 PAKISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY - OCTOBER 2019	134
TABLE 3.59 PHILIPPINES'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND)
DEPARTURE FROM 15YA, JULY - OCTOBER 2019	137
TABLE 3.60 PHILIPPINES'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA. JULY - OCTOBER 2019	137
TABLE 3.61 POLAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA. JULY-OCTOBER 2019	140
TABLE 3.62 POLAND'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	-
DEPARTURE FROM 5YA. JULY-OCTOBER 2019	140
TABLE 3.63 ROMANIA'S AGROCUMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA JULY-OCTOBER 2019	143
TABLE 3 64 ROMANIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	1.0
DEPARTURE FROM 5YA. JULY-OCTOBER 2019	143
TABLE 3.65 RUSSIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA. JULY-OCTOBER 2019	148
TABLE 3.66 RUSSIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA. JULY-OCTOBER 2019	148
TABLE 3.67 THAILAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS. CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY-OCTOBER 2019	151
TABLE 3.68 THAILAND'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY-OCTOBER 2019	151
TABLE 3.69 TURKEY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY-OCTOBER 2019.	154
TABLE 3.70 TURKEY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY-OCTOBER 2019	154
TABLE 3.71 UKRAINE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY-OCTOBER 2019.	156
TABLE 3.72 UKRAINE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY-OCTOBER 2019.	156
TABLE 3.73 UNITED STATES'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES A	AND
DEPARTURE FROM 15YA, JULY-OCTOBER 2019.	161
TABLE 3.74 UNITED STATES'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AN	ID
DEPARTURE FROM 5YA, JULY-OCTOBER 2019.	161
TABLE 3.75 UZBEKISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	5
DEPARTURE FROM 15YA, JULY-OCTOBER 2019	164
TABLE 3.76 UZBEKISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY-OCTOBER 2019	165
TABLE 3.77 VIETNAM'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JANUARY - APRIL 2019	168
TABLE 3.78 VIETNAM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA/15YA, JANUARY -APRIL 2019	168
TABLE 3.79 SOUTH AFRICA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES A	ND
DEPARTURE FROM 15YA, JULY -OCTOBER 2019	171
TABLE 3.80 SOUTH AFRICA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	C
DEPARTURE FROM 5YA, JULY -OCTOBER 2019	171
TABLE 3.81 ZAMBIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 15YA, JULY -OCTOBER	173

TABLE 3.82 ZAMBIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND	
DEPARTURE FROM 5YA, JULY -OCTOBER 2019	174
TABLE 4.1 CROPWATCH AGROCLIMATIC AND AGRONOMIC INDICATORS FOR CHINA, JULY - OCTOBER 2019, DEPA	RTURE
FROM 5YA AND 15YA	178
TABLE 4.2 CHINA 2019 PRODUCTION OF MAIZE, RICE, WHEAT, AND SOYBEAN, AND PERCENTAGE CHANGE FROM 2	2018,
BY PROVINCE.	179
TABLE 4.3 CHINA 2019 EARLY RICE, SINGLE RICE/SEMI-LATE RICE, AND LATE RICE PRODUCTION AND PERCENTAGE	
DIFFERENCE FROM 2018, BY PROVINCE.	180
TABLE 4.4 CHINA 2019 WINTER CROPS, SUMMER CROPS AND TOTAL ANNUAL CROP PRODUCTION AND PERCENTAR	GE
DIFFERENCE FROM 2018, BY PROVINCE	181
TABLE 4.5 STATISTICS OF RICE PLANT HOPPER IN CHINA (MID-LATE SEPTEMBER 2019)	190
TABLE 4.6 STATISTICS OF RICE PLANT HOPPER IN CHINA (MID-LATE SEPTEMBER 2019)	191
TABLE 4.7 STATISTICS OF RICE SHEATH BLIGHT IN CHINA (MID-LATE SEPTEMBER 2019)	192
TABLE 4.8 STATISTICS OF MAIZE ARMYWORM IN CHINA (MID-LATE SEPTEMBER 2019)	193
TABLE 4.9 STATISTICS OF MAIZE NORTHERN LEAF BLIGHT IN CHINA (MID-LATE SEPTEMBER 2019)	194
TABLE 5.1 2019 CEREAL AND SOYBEAN PRODUCTIONS ESTIMATES IN THOUSANDS TONNES.	197
TABLE5.2 COMPARISON OF 2019 AND 2018 PRODUCTION OF MAJOR IMPORTERS	200
TABLE A.1 JULY 2019 - OCT 2019 AGROCLIMATIC INDICATORS AND BIOMASS BY GLOBAL MONITORING AND	
REPORTING UNIT (MRU)	208
TABLE A.2 JULY 2019 - OCT 2019 AGROCLIMATIC INDICATORS AND BIOMASS BY COUNTRY	210
TABLE A.3 ARGENTINA, JULY - OCT 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY PROVINCE)	211
TABLE A.4 AUSTRALIA, JULY - OCT 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE)	211
TABLE A.5 BRAZIL, JULY - OCT 20192019 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE)	211
TABLE A.6 CANADA, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY PROVINCE)	212
TABLE A.7 INDIA, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE)	212
TABLE A.8 KAZAKHSTAN, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY OBLAST)	213
TABLE A.9 RUSSIA, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY OBLAST, KRAY AND REI	PUBLIC)
	213
TABLE A.10 UNITED STATES, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE)	214
TABLE A.11 CHINA, JULY - OCT 2019 2019 AGROCLIMATIC INDICATORS AND BIOMASS (BY PROVINCE)	214

LIST OF FIGURES

FIGURE 1.1 GLOBAL DEPARTURE FROM RECENT 15 YEAR AVERAGE OF THERAIN, TEMP AND RADPAR INDICATORS SINCE 2017 JASOPERIOD (AVERAGE OF 65 MRUS, UNWEIGHTED)	16
FIGURE 1.2 GLOBAL MAP OF RAINFALL ANOMALY (AS INDICATED BY THE RAIN INDICATOR) BY CROPWATCH MAPPING	3
AND REPORTING UNIT: DEPARTURE OF JULY TO OCTOBER 2019 TOTAL FROM 2004-2018 AVERAGE (15YA), IN	
PERCENT.	17
FIGURE 1.3 GLOBAL MAP OF TEMPERATURE ANOMALY (AS INDICATED BY THE TEMP INDICATOR) BY CROPWATCH	
MAPPING AND REPORTING UNIT: DEPARTURE OF JULY TO OCTOBER 2019 AVERAGE FROM 2004-2018 AVERAGE	
(15YA), IN °C	19
FIGURE 1.4 GLOBAL MAP OF PHOTOSYNTHETICALLY ACTIVE RADIATION ANOMALY (AS INDICATED BY THE RADPAR	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT: DEPARTURE OF JULY TO OCTOBER 2019 TOTAL FROM	
2004-2018 AVERAGE (15YA), IN PERCENT.	19
FIGURE 1.5 GLOBAL MAP OF PHOTOSYNTHETICALLY ACTIVE VRADIATION ANOMALY (AS INDICATED BY THE RADPAR	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT (MRU), DEPARTURE FROM 15YA BETWEEN BETWEEN	
JANUARY AND APRIL 2019	20
FIGURE 2.1 WEST AFRICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JULY TO OCTOBER 2019	23
FIGURE 2.2 NORTH AMERICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JANUARY TO APRIL 2019	25
FIGURE 2.3 SOUTH AMERICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JULY TO OCTOBER 2019	27
FIGURE 2.4 SOUTH AND SOUTHEAST ASIA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JULY TO OCTOBER	
2019	29
FIGURE 2.5 WESTERN EUROPE MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JULY TO OCTOBER 2019	31
FIGURE 2.6 CENTRAL EUROPE-WESTERN RUSSIA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JULY TO	
October 2019	33
FIGURE 3.1 NATIONAL AND SUBNATIONAL RAINFALL ANOMALY (AS INDICATED BY THE RAIN INDICATOR) OF JULY TO	
OCTOBER 2019 TOTAL RELATIVE TO THE 2004-2018 AVERAGE (15YA), IN PERCENT.	38

F	IGURE 3.2 NATIONAL AND SUBNATIONAL TEMPERATUTE RAINFALL ANOMALY (AS INDICATED BY THE RAIN INDICATO	DR)
С	if July to October 2019 average relative to the 2004-2018 average (15YA), in °C	. 39
F	IGURE 3.3 N ATIONAL AND SUBNATIONAL SUNSHINE ANOMALY (AS INDICATED BY THE RADPAR INDICATOR) OF JUL	Y TO
C	OCTOBER 2019 TOTAL RELATIVE TO THE 2004-2018 AVERAGE (15YA), IN PERCENT.	. 40
F	IGURE 3.4 National and subnational bionass production potential anomaly (as indicated by the ${\sf BION}$	1SS
11	NDICATOR) OF JULY TO OCTOBER 2019 TOTAL RELATIVE TO THE 2004-2018 AVERAGE (15YA), IN PERCENT	. 40
F	IGURE 3.5 AFGHANISTAN'S CROP CONDITION, JULY - OCTOBER 2019	. 45
F	IGURE 3.6 ANGOLA'S CROP CONDITION, JULY – OCTOBER 2019	. 47
F	IGURE 3.7 ARGENTINA'S CROP CONDITION, JULY - OCTOBER 2019	. 50
F	IGURE 3.8 AUSTRALIA'S CROP CONDITION, JULY - OCTOBER 2019	. 53
F	IGURE 3.9 BANGLADESH'S CROP CONDITION, JULY - OCTOBER 2019.	. 56
F	IGURE 3.10 BELARUS'S CROP CONDITION, JULY - OCTOBER 2019	. 59
F	IGURE 3.11 BRAZIL'S CROP CONDITION, JULY - OCTOBER 2019	. 63
F	IGURE 3.12 CANADA'S CROP CONDITION, JULY - OCTOBER 2019	. 67
F	IGURE 3.13 GERMANY'S CROP CONDITION. JULY-OCTOBER 2019	. 71
F	IGURE 3.14 EGYPT'S CROP CONDITION. JULY - OCTOBER 2019	. 74
F	IGURE 3.15 ETHIOPIA'S CROP CONDITION. JULY - OCTOBER 2019	. 77
F	IGURE 3 16 FRANCE'S CROP CONDITION JULY - OCTOBER 2019	80
F	IGURE 3 17 UNITED KINGDOM CROP CONDITION JULY - OCTOBER 2019	83
F	IGURE 3 18 HUNGARY'S CROP CONDITION JULY - OCTOBER 2019	86
F	IGURE 3.19 INDONESIA'S CROP CONDITION, JULY - OCTOBER 2019.	. 00
, E		. 05
Г Б	IGURE 3.20 INDIA 5 CROP CONDITION, JULY - OCTOBER 2015	. 95
г с	ISURE 3.21 IRAN S CROP CONDITION, JULY - OCTOBER 2015	. 90
г г	IGURE 2.22 MATAYUSTAN'S CROP CONDITION, JULY - OCTOBER 2019	102
г г	IGURE 3.23 NAZAKHSTAN S CROP CONDITION, JULY - OCTOBER 2019	102
- F	IGURE 3.24 KENYA S CROP CONDITION, JULY – OCTOBER 2019	100
۲ ۲	IGURE 3.25 CAMBODIA'S CROP CONDITION, JULY – OCTOBER 2019	108
F	IGURE 3.26 SRI LANKA S CROP CONDITION, JULY - OCTOBER 2019	112
+ -	IGURE 3.27 MIOROCCO'S CROP CONDITION, JULY - UCTOBER 2019	114
F	IGURE 3.28 MEXICO'S CROP CONDITION, JULY - UCTOBER 2019	118
F	IGURE 3.29 MYANMAR'S CROP CONDITION, JULY - UCTOBER 2019	121
F	IGURE 3.30 MONGOLIA'S CROP CONDITION, JULY - OCTOBER 2019	123
F	IGURE 3.31 MOZAMBIQUE'S CROP CONDITION, JULY - OCTOBER 2019	126
F	IGURE 3.32 NIGERIA'S CROP CONDITION, JULY - OCTOBER 2019	130
F	IGURE 3.33 PAKISTAN'S CROP CONDITION, JULY - OCTOBER 2019	132
F	IGURE 3.34 PHILIPPINES'S CROP CONDITION, JULY - OCTOBER 2019	136
F	IGURE 3.35 POLAND'S CROP CONDITION, JULY-OCTOBER 2019	138
F	IGURE 3.36 ROMANIA'S CROP CONDITION, JULY-OCTOBER 2019	142
F	IGURE 3.37 RUSSIA'S CROP CONDITION, JULY-OCTOBER 2019	145
F	IGURE 3.38 THAILAND'S CROP CONDITION, JULY-OCTOBER 2019	149
F	IGURE 3.39 TURKEY'S CROP CONDITION, JULY-OCTOBER 2019	152
F	IGURE 3.40 UKRAINE'S CROP CONDITION, JULY-OCTOBER 2019	155
F	IGURE 3.41 UNITED STATES'S CROP CONDITION, JULY-OCTOBER 2019	159
F	IGURE 3.42 UZBEKISTAN'S CROP CONDITION, JULY - OCTOBER 2019	163
F	IGURE 3.43 VIETNAM'S CROP CONDITION, JULY - OCTOBER 2019	167
F	IGURE 3.44 SOUTH AFRICA'S CROP CONDITION, JULY - OCTOBER 2019	170
F	IGURE 3.45 ZAMBIA'S CROP CONDITION, JULY - OCTOBER 2019	172
F	IGURE 3.46 KYRGYZSTAN'S CROP CONDITION, JULY - OCTOBER 2019	175
F	IGURE 4.1 CHINA SPATIAL DISTRIBUTION OF RAINFALL PROFILES, JULY - OCTOBER 2019	178
F	IGURE 4.2 CHINA SPATIAL DISTRIBUTION OF TEMPERATURE PROFILES, JULY - OCTOBER 2019	178
F	IGURE 4.3 CHINA CROPPED AND UNCROPPED ARABLE LAND, BY PIXEL, JULY - OCTOBER 2019	178
F	IGURE 4.4 CHINA MAXIMUM VEGETATION CONDITION INDEX (VCIX), BY PIXEL. JULY - OCTOBER 2019	179
F	IGURE 4.5 CHINA MINIMUM VEGETATION HEALTH INDEX (LEFT). BY PIXEL JULY - OCTOBER 2019	179
F	IGURE 4.6 CHINA CROPPING INTENSITY, BY PIXEL. IN 2019CHINA VEGETATION HEALTH INDEX MINIMUM (VHIN).	BY
P	IXEL, JULY - OCTOBER 2019	179
F	IGURE 4.7 CROP CONDITION CHINA NORTHEAST REGION. JULY - OCTOBER 2019	183
F	IGURE 4.8 CROP CONDITION CHINA INNER MONGOLIA, JULY - OCTOBER 2019	184

FIGURE 4.9 CROP CONDITION CHINA HUANGHUAIHAI, JULY - OCTOBER 2019	185
FIGURE 4.10 CROP CONDITION CHINA LOESS REGION, JULY - OCTOBER 2019	186
FIGURE 4.11 CROP CONDITION LOWER YANGTZE REGION, JULY - OCTOBER 2019	187
FIGURE 4.12 CROP CONDITION SOUTHWEST CHINA REGION, JULY - OCTOBER 2019	188
FIGURE 4.13 CROP CONDITION SOUTHERN CHINA REGION, JULY - OCTOBER 2019	189
FIGURE 4.19 RATE OF CHANGE OF IMPORTS AND EXPORTS FOR RICE, WHEAT, MAIZE, AND SOYBEAN IN CHINA IN 20	019
	195
FIGURE 5.1 TRACK OF CYCLONE IDAI: THE BEGINNING OF A FIRE IN SHERMAN OAKS, CALIFORNIA, FILLS THE SKYLINI	E WITH
SMOKE	202

Abbreviations

5YA	Five-year average, the average for the four-month period from July from 2014 to 2018 to October next year; one of the standard reference periods.
15YA	Fifteen-year average, the average for the four-month period from July from 2004
	to 2018 to October next year; one of the standard reference periods and typically
	referred to as "average".
AEZ	Agro-Ecological Zone
BIOMSS	CropWatch agroclimatic indicator for biomass production potential
BOM	Australian Bureau of Meteorology
CALF	Cropped Arable Land Fraction
CAS	Chinese Academy of Sciences
CWAI	CropWatch Agroclimatic Indicator
CWSU	CropWatch Spatial Units
DM	Dry matter
EC/JRC	European Commission Joint Research Centre
ENSO	El Niño Southern Oscillation
FAO	Food and Agriculture Organization of the United Nations
GAUL	Global Administrative Units Layer
GVG	GPS, Video, and GIS data
На	hectare
Kcal	kilocalorie
MPZ	Major Production Zone
MRU	Monitoring and Reporting Unit
NDVI	Newseller of Difference Mentation Index
	Normalized Difference vegetation index
OISST	Optimum Interpolation Sea Surface Temperature
OISST PAR	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation
OISST PAR PET	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration
OISST PAR PET RADI	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth
OISST PAR PET RADI RADPAR	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator
OISST PAR PET RADI RADPAR RAIN	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator
oisst Par Pet Radi Radpar Rain Soi	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator Southern Oscillation Index
OISST PAR PET RADI RADPAR RAIN SOI TEMP	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator Southern Oscillation Index CropWatch air temperature agroclimatic indicator
OISST PAR PET RADI RADPAR RAIN SOI TEMP Ton	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator Southern Oscillation Index CropWatch air temperature agroclimatic indicator Thousand kilograms
OISST PAR PET RADI RADPAR RAIN SOI TEMP Ton VCIx	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator Southern Oscillation Index CropWatch air temperature agroclimatic indicator Thousand kilograms CropWatch maximum Vegetation Condition Index
OISST PAR PET RADI RADPAR RAIN SOI TEMP Ton VCIx VHI	Normalized Difference Vegetation IndexOptimum Interpolation Sea Surface TemperaturePhotosynthetically active radiationPotential EvapotranspirationCAS Institute of Remote Sensing and Digital EarthCropWatch PAR agroclimatic indicatorCropWatch rainfall agroclimatic indicatorSouthern Oscillation IndexCropWatch air temperature agroclimatic indicatorThousand kilogramsCropWatch maximum Vegetation Condition IndexCropWatch Vegetation Health Index
OISST PAR PET RADI RADPAR RAIN SOI TEMP Ton VCIx VHI VHIN	Optimum Interpolation Sea Surface Temperature Photosynthetically active radiation Potential Evapotranspiration CAS Institute of Remote Sensing and Digital Earth CropWatch PAR agroclimatic indicator CropWatch rainfall agroclimatic indicator Southern Oscillation Index CropWatch air temperature agroclimatic indicator Thousand kilograms CropWatch maximum Vegetation Condition Index CropWatch Vegetation Health Index

Bulletin overview and reporting period

This CropWatch bulletin presents a global overview of crop stage and condition between January and April 2019, a period referred to in this bulletin as the JASO (July, August, September and October) period or just the "reporting period." The bulletin is the 115rd such publication issued by the CropWatch group at the Institute of Remote Sensing and Digital Earth (RADI) of the Chinese Academy of Sciences, Beijing.

CropWatch indicators

CropWatch analyses are based mostly on several standard as well as new ground-based and remote sensing indicators, following a hierarchical approach.

In parallel to an increasing spatial precision of the analyses, indicators become more focused on agriculture as the analyses zoom in to smaller spatial units. CropWatch uses two sets of indicators: (i) agroclimatic indicators—RAIN, TEMP, RADPAR, and potential BIOMSS, which describe weather factors and its impacts on crops; and (ii) agronomic indicators—VHIn, CALF, and VCIx, Cropping Intensity, and vegetation indices, describing crop condition and development. Importantly, the indicators RAIN, TEMP, RADPAR, and BIOMSS do not directly describe the weather variables rain, temperature, radiation, or biomass, but rather they are spatial averages over agricultural areas, which are weighted according to the local crop production potential. (ii) PAY indicators: planted area, yield and production.

For each reporting period, the bulletin reports on the departures for all seven indicators, which (with the exception of TEMP) are expressed in relative terms as a percentage change compared to the average value for that indicator for the last five or fifteen years (depending on the indicator).For more details on the CropWatch indicators and spatial units used for the analysis, please see the quick reference guide in Annex B, as well as online resources and publications posted at www.cropwatch.com.cn.

CropWatch analysis and indicators

The analyses cover large global zones; major producing countries of maize, rice, wheat, and soybean; and detailed assessments for Chinese regions, 41 major agricultural countries, and 201 Agro-Ecological Zones (AEZs).

Chapter	Spatial coverage	Key indicators
Chapter 1	World, using Monitoring and Reporting Units (MRU), 65 large, agro-ecologically homogeneous units covering the globe	RAIN, TEMP, RADPAR, BIOMSS
Chapter 2	Major Production Zones (MPZ), six regions that contribute most to global food production	As above, plus CALF, VCIx, and VHIn
Chapter 3	42 key countries (main producers and exporters) and 205 AEZs	As above plus NDVI and GVG survey
Chapter 4	China and regions	As above plus high resolution images; Pest and crops trade prospects
Chapter 5	Production outlook, and updates on disaster events and El Niño.	

This bulletin is organized as follows:

Regular updates and online resources

The bulletin is released quarterly in both English and Chinese. E-mail **cropwatch@radi.ac.cn** to sign up for the mailing list or visit CropWatch online at **www.cropwatch.com.cn**, **http://cloud.cropwatch.com.cn/**

Executive summary

The current CropWatch bulletin describes world-wide crop condition and food production as appraised by data up to the end of October 2019. It is prepared by an international team coordinated by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences.

The assessment is based mainly on remotely sensed data. It covers prevailing weather conditions, including extreme factors, at different spatial scales, starting with global patterns in Chapter 1. Chapter 2 focuses on agro-climatic and agronomic conditions in major production zones in all continents. Chapter 3 covers the major agricultural countries that, together, make up at least 80% of production and exports (the "core countries") while chapter 4 zooms into China. Special attention is paid to the major producers of maize, rice, wheat, and soybean fr which the bulletin presents a global production estimate for crops harvested throughout 2019 (Chapter 5.1).

The bulletin is issued at a time when virtually all 2019 crops have been harvested in the temperate northern hemisphere, while in many tropical areas in both hemispheres rice crops are growing (to be harvested in early 2020) or are close to harvest. In the southern hemisphere the summer season/monsoon season is ongoing.

Agro-climatic conditions (Chapter 1)

Global agroclimatic conditions are assessed based on CropWatch Agroclimatic Indices which describe weather and climate over agricultural areas only. They are referred to as RAIN, TEMP and RADPAR and expressed in the same units as the corresponding climatological variables (rainfall, temperature and photosynthetically active radiation). BIOMSS is an estimate of the plant biomass production potential.

The current reporting period was globally warm and dry, and this is confirmed by numerous fires listed in the section on Disasters (Chapter 5.2) on almost all continents. CropWatch uses 65 large spatial units (referred to as MRU) to asses global agro-climatic patterns, Most MRUs experienced average RAIN, 57% had above average temperature and 66% had above average sunshine.

On a continental basis, RAIN anomalies were largest in north America (+24% above average), central Asia (+22%) and in Oceania (down 38% compared with average). Low precipitation in southern and especially central America (-9%) is directly associated with a very tense situation in the "drought corridor" (refer to Chapter 5.2 on Disasters).

In North America, TEMP was 0.4°C below average. Positive anomalies occured in central and eastern Asia (+0.3°C compared with average) where almost all MRUs has consistently warmer than average weather positive over their agricultural areas (89% and 100%, respectively). RADPAR was generally close to average except in South and Central America (+3%) and Oceania (+6%), where all MRUs were affected. The largest BIOMSS increase occurred in central Asia (+5%)

Acutely abnormal or damaging weather conditions are described in Chapters 3.1 by country and in Chapter 5.2 impact type. They include several tropical cyclones in different Basins: Kyarr, in the Indian Ocean, affected southern Asia and the Horn of Africa; Dorian created havoc in the Caribbean and the western Pacific, Lekima, Faxai and Hagibis affected eastern Asia and south-east Asia.

Global Agricultural production estimates (Chapter 5.1)

The bulletin provides the second revised global estimate by the CropWatch team for 2019 production of the major commodities. About 90% of the production is actually modeled and about 10% is trend-based.

The volumes produced in 2019 include 1055 million tonnes of maize, up 0.5% from 2018, 754 millions for rice (as paddy; up 4.2%), 716 million tonnes of wheat (a 0.9% increase) and 324 million tonnes of soybeans, 1.0% lower than last year's output.

The largest net cereal production increases in million tonnes occurred in India (13.3, in spite of a drop in wheat output), China (10.6), United States (9.7), Pakistan (5.2) followed by Bangladesh (3.7), Argentina (3.3), Myanmar (2.6) and several central and western Asian countries where wheat did well after several years of poor performance (2.0 to 2.4 in Afghanistan, Iran and Uzbekistan). The largest net cereal production decreases in excess of 1 million tons affected Australia (-5.4 due to poor wheat), Kazakhstan (-3.5, wheat), South Africa (-1.7, maize), Indonesia (-1.6, rice) and Ukraine (-1.4, maize and wheat). As described in the country narratives in Chapter 3, the listed situations are directly related to prevailing environmental conditions

China (Chapter 4)

The total 2019 annual crop production is estimated at 628 million tons, up 2% from 2018. For summer crops (including maize, semi-late rice / single rice, late rice, spring wheat, soybean, tuber crops, and other minor summer crops) the output is put at 467 million tons, a 2% increase This is mainly due to the good performance of maize and rice, the production of which reached 224 million tons, 1% above the 2018 output. Maize yields in Heilongjiang, Jilin, Liaoning and Inner Mongolia were up 3%, 5%, 3%, and 2%, respectively. In contrast, Both Henan and Shandong maize production dropped by 2% due to drought at early growing stage.

At 203 million tons, rice production (mostly single rice and late rice) was 3% above last year's output. Yield increase due to favorable late season weather was the main factor behind the improved production. The wheat production estimate of 126 million tons was up 2% over 2018.

Soybean output (14441 thousand tons) underwent a year-on-year increase of 3%. 2019 was the fourth consecutive year of increased soybean hectarage and production. In Heilongjiang, the main soybean region of China, production was up 8%. This is exceeded in Jilin where increased planted area and yield resulted in an 10% increase in output.